What are useful practices for migrating a system to Apache Kafka® and Confluent Cloud, and why use Confluent to modernize your architecture?
Dima Kalashnikov (Technical Lead, Picnic Technologies) is part of a small analytics platform team at Picnic, an online-only, European grocery store that processes around 45 million customer events and five million internal events daily. An underlying goal at Picnic is to try and make decisions as data-driven as possible, so Dima's team collects events on all aspects of the company—from new stock arriving at the warehouse, to customer behavior on their websites, to statistics related to delivery trucks. Data is sent to internal systems and to a data warehouse.
Picnic recently migrated from their existing solution to Confluent Cloud for several reasons:
Dima's team was extremely careful and took their time with the migration. They ran a pilot system simultaneously with the old system, in order to make sure it could achieve their fundamental performance goals: complete stability, zero data loss, and no performance degradation. They also wanted to check it for costs.
The pilot was successful and they actually have a second, IoT pilot in the works that uses Confluent Cloud and Debezium to track the robotics data emanating from their automatic fulfillment center. And it's a lot of data, Dima mentions that the robots in the center generate data sets as large as their customer events streams.
EPISODE LINKS